Welcome to **Anagrammer Crossword Genius**! Keep reading below to see if
**nonas** is an answer to any crossword puzzle or word game (Scrabble, Words With Friends
etc).
Scroll down to see all the info we have compiled on nonas.

# nonas

### Searching in Crosswords ...

The answer **NONAS ** has **1**
possible clue(s) in existing crosswords.

### Searching in Word Games ...

The word **
NONAS ** is
**VALID** in some board games.
Check NONAS in word games
in Scrabble, Words With Friends, see scores, anagrams etc.

### Searching in Dictionaries ...

## Definitions of nonas in various dictionaries:

** noun ** - a virus disease

** NONAS ** - A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associa...

### Word Research / Anagrams and more ...

Keep reading for additional results and analysis below.

Possible Crossword Clues |
---|

Singer Gaye, et al. |

Last Seen in these Crosswords & Puzzles |
---|

Dec 14 2008 Boston Globe |

Possible Dictionary Clues |
---|

Nine having nine. |

Nonas might refer to |
---|

A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers. * While this use of non-associative means that associativity is not assumed, it does not mean that associativity is disallowed. In other words, "non-associative" means "not necessarily associative", just as "noncommutative" means "not necessarily commutative" for noncommutative rings. * An algebra is unital or unitary if it has an identity element I with Ix = x = xI for all x in the algebra. For example, the octonions are unital, but Lie algebras never are. * The nonassociative algebra structure of A may be studied by associating it with other associative algebras which are subalgebra of the full algebra of K-endomorphisms of A as a K-vector space. Two such are the derivation algebra and the (associative) enveloping algebra, the latter being in a sense "the smallest associative algebra containing A". * More generally, some authors consider the concept of a non-associative algebra over a commutative ring R: An R-module equipped with an R-bilinear binary multiplication operation. If a structure obeys all of the ring axioms apart from associativity (for example, any R-algebra), then it is naturally a * * * * * Z * * * * {\displaystyle \mathbb {Z} } * -algebra, so some authors refer to non-associative * * * * * Z * * * * {\displaystyle \mathbb {Z} } * -algebras as non-associative rings. |